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Abstract. A crucial factor for success in today’s web business is the
ability to offer relevant, personalized content to users. To achieve this,
most modern websites – especially e-commerce and social networking
platforms – rely on data-driven recommender engines. In this contri-
bution we present a general recommender scheme which uses an auto-
matically generated ontology. The approach is based on a multistage
procedure that involves the extraction of a large number of tags from
user profiles of a popular social networking platform. From these tags
an inverted index is computed which is often referred to as a “folkson-
omy”. From this index a tag graph can be created which then allows to
group together semantically related tags using a clustering method. We
show how the resulting tag clusters can be linked to virtually any data
entity on the web site in order to obtain a recommender engine for that
entity. We provide two example applications for this: “user-to-user” rec-
ommendations and “user-to-group” recommendations. Approaches for
evaluating the quality of the recommendations are discussed.

1 Introduction

One reason for the high popularity and the outstanding success of big internet
players like Google, Amazon or Facebook is the way these websites present cer-
tain information to their users. These systems prove to be very efficient in mining
their own terabytes of data in order to find the content that is most likely to be
relevant to the user.

The enormous amount of content on these sites obeys the classical power law
distribution, i.e. it adheres the well known long tail paradigm [2]. Most of the
content on these platforms is relevant to only a very small number of users.

Therefore it is more efficient to push this content to users as recommendations
rather than let the user pull it. Prominent examples for this are the “Customers
Who Bought This Item Also Bought”-feature on Amazon or the friend suggestion
mechanism on Facebook. Features like these make a website highly efficient and
convenient for the users, but also play a critical role in many business models,
especially in e-commerce applications.

A prerequisite for building such recommender engines is the availability of
the right ontologies that allow us to relate different objects to one another, or
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even to relate objects of different types to each other. Because of the massive
amounts of data, manual procedures for building such ontologies are infeasible.
Instead, automatic processes are needed for creating such ontologies. In this
contribution we show for a popular social networking platform, that tag data
provides an excellent data source which can be structured in multiple steps via
automatic processes such that a general semantic recommender scheme can be
obtained.

The organization of this manuscript follows the sketch of the system archi-
tecture as depicted in Fig. 1. In a first step, tags are extracted from a large
database of user profiles and an inverted index – called “Tag Index” below – is
created from the data (see Sect. 2). This tag index can be viewed as a special
type of “folksonomy” [12]. From this index, in a second step, a “Tag Graph”
is computed which links tags according to their co-occurrence in user profiles
(see Sect. 3). Based on this graph, a clustering method is applied for grouping
related tags (Sect. 4). Finally, these “Tag Clusters” are used to to build different
recommender engines that are used by the web application to push personalized
and relevant content to users.

We present two application examples of the proposed recommender scheme:
“user-to-user” and “user-to-group” recommendations (see Sect. 5). In Sect. 6
we describe the experimental evaluation of the effectiveness of the recommender
engines and we provide a summary and a conclusion in Sect. 7.

Tag Clusters

Tag Index

Tag Graph

User Data

Web−Application

Recommender
Engine

Fig. 1. System overview:
Recommender engines for a
web application are created
by extracting a large number
of tags from user profiles of
a popular social networking
website and structuring this
data in multiple processing
stages. These involve build-
ing a “Tag Index”, a “Tag
Graph” and finally, “Tag
Clusters”.
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1.1 Related Work

Previous work regarding the creation of folksonomies from user generated meta-
data on web sites was presented in [12]. The authors discuss the advantage of the
approach over meta-data being created by dedicated experts or by the respective
owners of the resources themselves, but possibilities for bringing structure to the
folksonomie by further processing are not investigated.

One of the first works which used a clustering approach for analyzing the
structure of a folksonomy was presented in [3], where the authors utilized the
unveiled structures for improving search and exploration. The idea of creating
personalized content by clustering a folksonomy was also brought up by [9], who
also used the approach for improving search rather than creating recommenda-
tions.

Another approach for applying clustering techniques to uncover structures
in folksonomies can be found in [14], where the author utilized the algorithm of
Clauset, Newman and Moore [5] to find groups of tags in a tag graph. A modified
version of this approach is also adopted for our method (see Sect. 4).

2 Tag Index: A Folksonomy of User Profile Data

At present, the XING platform holds more than eight million profiles of profes-
sionals from all over the world, covering all kinds of organization sizes, career
levels and industries. On these profiles users provide rather structured infor-
mation about their educational background and their employment history, but
also unstructured data in a tag-like format about their personal interests, their
professional skills (called haves), what they are seeking (called wants) and what
organizations they belong to. This provides a rich data source for extracting
a folksonomy [12] by processing and aggregating tags from these profiles and
building an inverted index from this data.

In contrast to other popular web sites like flickr1 or del.icio.us2, where folk-
sonomies arise from users collaboratively tagging a set of resources [9], we have a
slightly different scenario here where there are no resources as such, but instead
there are users who enter tags about themselves. Nevertheless – and as will be
demonstrated below – this is completely sufficient for creating a useful special
type of folksonomy D = (U, T, A) which consists of a set of users U , a set of tags
T and a set of annotations A of the form

A ⊆ { (u, t) | u ∈ U, t ∈ T }. (1)

Besides the folksonomy D, we are also interested in two more things: a function

freq(t) = ‖{ (u, t′) ∈ A, t′ = t } ‖, (2)

which denotes the total number of occurrences of a tag t in A and a function

1 http://www.flickr.com
2 http://delicious.com
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U(t) = { u | (u, t′) ∈ A, t′ = t }, (3)

which denotes the set of users, that have the tag t in their profile.
In the following we describe from a technical point of view how tag data is

extracted from user profiles and how an inverted index can be computed using
the MapReduce paradigm [7]. This inverted index is a “materialization” of the
set of tags T together with the above functions freq(t) and U(t).

2.1 Data Extraction

In order to extract tag data from user profiles a simple tokenizer is used which
“visits” each profile and collects tags by converting the structured data into a
flat list of terms. These terms are then passed through a normalization function
which removes all whitespaces and special characters and capitalizes each char-
acter. Formally, we define the tokenizer as a function T (u) which returns the set
of all tags a user u has in their profile. This function will be used in the process
described below.

2.2 MapReduce

While it is trivial to compute an inverted index given a small number of annota-
tions (u, t), it turns out to be not as easy for a very large amount of input data
like in the current application scenario: the total number of tags to be indexed
is currently about 67 million. Also, the number of tags grows from day to day
and the source data changes frequently, such that the index does not have to be
build only once, but it must be automatically rebuilt on a regular basis. In order
to achieve this, the computation has to be parallelized due to time and mem-
ory constraints. In fact, this is one of the standard application examples of the
MapReduce paradigm as introduced in [7]. Parallelization is achieved by carrying
out the computation in two phases, a “map-phase” and a “reduce-phase”. In the
“map-phase” the input data is split up into multiple blocks – each of which can
be processed in parallel – and transformed into an intermediate representation.
The intermediate representation has again the property that it can be split into
blocks allowing for parallel processing in order to obtain the final representation.

Figure 2 shows the implementation of the MapReduce process for our task. In
a first step, the user data is split into many blocks which are processed in parallel
by a worker farm. When processing one block, a worker reads the profile data
from the user database, applies the above described tokenizer to obtain a set of
annotations (u, t) and writes them into an intermediate representation consisting
of the two tables tag∗ and user tag∗. After the “map-phase” is finished, the
“reduce-phase” starts and the table tag∗ is split into blocks which are again pro-
cessed in parallel by another worker farm. Each worker processes blocks of tags
by reading all corresponding annotations from the table user tag∗, determining
the count, converting the string-typed tags to numerical ids for efficiency and
writing the result into the two tables tag and user tag.
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This final representation serves as an efficient materialization of the set of
tags T (columns id and name in table tag), the function freq(t) (column count

in table tag) and the function U(t) (table user tag). This will be the basis for
the creation of a “Tag Graph” as described in the following Section.

3 Tag Graph: Deriving Semantic Relations

A tag graph G = (T, E) is an undirected, weighted graph and consists of a set
of tags T – the vertices of the graph – and a set of edges E given by

E = { (ti, tj , w) | ti, tj ∈ T, ti $= tj , w = lift(ti, tj), lift(ti, tj) > θ }, (4)

where θ is a threshold parameter defining a minimum value for edge weights
and lift is a “relatedness” measure between the two tags ti and tj , defined as
follows:

lift(ti, tj) =
cooc(ti, tj) ∗ ‖U‖

freq(ti) ∗ freq(tj)
, (5)

where cooc(ti, tj) is the number of co-occurrences of the two tags ti and tj in one
and the same user profile. The lift function as a measure of similarity between
two items was introduced in [4], where it was originally called “interest”. The
function measures how many times more often the items ti and tj co-occur than
expected if the two events where statistically independent.

This definition is a formalization of the idea that we can assume a certain
semantic relationship between two tags if they often occur together in different
users’ profiles.

As also stated by other authors [3, 10, 6], a disadvantage of folksonomies is
that they lack a kind of efficient organizational structure which is needed for
many applications. The tag graph as introduced above can be seen as a first
layer of such an organizational structure which already proves useful, e.g. for
applications that recommend related tags [15, 11]. In the following, we use the
tag graph as a basis for introducing even more structure by discovering groups
of tags using a clustering technique.

4 Tag Clusters: Grouping Related Tags

The goal of creating tag clusters is to obtain an explicit organizational structure
by finding groups of tags that are semantically related. The result is an ontology
that can be used for building recommender engines as described in Sect. 5.

The input to the clustering method is the tag graph G as defined in Sect. 3
and as a result, we obtain a set C of clusters as well as a weight function

wtag : T × C → R (6)
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Fig. 2. Computing an inverted index of tags via MapReduce [7]: In a “map-phase”
the user profile data is split up into multiple blocks which are processed in parallel by
a worker farm and transformed into an intermediate representation given by the two
tables tag

∗ and user tag
∗. In the “reduce-phase” the intermediate representation is

again processed in blocks in order to obtain the final representation consisting of the
two relations tag and user tag. See text for further detail.
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which returns – given a tag t ∈ T and a cluster c ∈ C – an “association strength”
of the tag for this cluster.

For computing the cluster solution, we used a modified version of a graph
based clustering method for community detection as introduced by Clauset, New-
man and Moore [5]. Their algorithm optimizes a measure called “modularity”
as defined by Newman and Girvan in [13]. The measure evaluates the quality
of graph cluster solutions with respect to criterions originating from the disci-
pline of network analysis. Based on a publicly available implementation in the
igraph-library3, we modified the method by adding constraints on the minimum
and maximum number of tags per cluster. In our experiments, choosing 2 as a
minimum and 30 as a maximum value for the number of tags per cluster yielded
the best overall quality of the cluster solution, as determined by carrying out a
series of experiments with different boundaries.

Another crucial factor for the quality of the cluster solution is the threshold θ
from Eq. 4 which controls the number of edges in the input graph. It turned out,
that the best results can be obtained by choosing rather high values for θ like 50
which effectively selects a subgraph only containing highly relevant connections.

Finally, for computing the value of the weight function, given a cluster and a
tag, we utilize the “betweenness”-measure from [8] which describes how strong
a tag’s relation to a cluster is.

Note: The clustering method mentioned here produces solutions, where every
tag belongs to exactly one cluster. This means, that for a given tag t the function
wtag(t, c) has a positive value for only one cluster c∗ and is 0 for all other clusters.
However, our formalism would allow to use a different clustering algorithm which
produces a fuzzy result in the sense, that each tag belongs to a cluster with a
certain probability. This is useful for tags with ambiguous meanings [9].

5 Recommender Engines

In this section we show how the tag clusters as defined in the preceding section
can be utilized in a general way for building recommender engines. The tag
clusters can be seen as a kind of linkage between any two types of objects.
Two examples that will be presented below are “user-to-user” and “user-to-
group” recommendations. Other combinations like “user-to-jobposting”, “user-
to-event”, or even “event-to-group” are thinkable as well.

Whichever case we choose, the key ingredient for creating a recommender
engine between the two types of objects is to define weight functions which
compute “projections” of the given objects to the cluster solution. E.g., for
objects of type “user” a simple weight function can be defined as follows:

wuser(c, u) =
∑

t∈T (u)

wtag(t, c) ∀c ∈ C. (7)

Recall, that T (u) is the set of all tags that a user has in their profile (Sect. 2.1)
and wtag(t, c) is the weight that tag t has in cluster c (Eq. 6). The function

3 http://igraph.sourceforge.net/
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simply takes all tags a user has in their profile and cumulates the weights of the
tags cluster-wise.

Having available weight functions for both object types and given one object
of the first type and a set of objects of the second type, we can generate a
ranked list of recommendations by combining the outputs of the weight functions.
Examples of how to do this will be given in the following two sections.

5.1 Example 1: User-to-user Recommendations

Using the weight function for users as already defined in the preceding section
now “user-to-user” recommendations for a user u, given a set of other users U∗,
can be computed by ranking each user u∗ ∈ U∗ according to the following scoring
function which cumulates the “projection”-weights for all clusters:

suser(u, u∗) =
∑

c∈C

wuser(u, c) ∗ wuser(u
∗, c). (8)

Sorting the users in U∗ according to the scoring function gives us a powerful
recommender engine which can for instance be used to introduce users to others
on the basis of semantic relations between the users’ profiles, because this implies
a high likelihood that the two persons would be interested in getting to know
each other. This leverages the power of the social graph on the platform by
increasing its density and generating new contacts between users.

A great advantage of the approach over search-based recommender engines
is that by using the tag clusters, implicitly a “fuzzy” matching is done. For
example, two users could get recommended to each other without having even
one tag in common, but having tags in the same area of interest. For example,
two users, one having the tags DATAMINING and SAS and the other the tags
MACHINELEARNING and R can get recommended to each other at a high score,
because all four tags have a high weight in the same cluster.

5.2 Example 2: Group Recommendations

Currently there are about 30.000 different groups on the platform, covering var-
ious topics ranging from “Amature Basketball Referees” to “SAS Users Ger-
many”. Accessability to these groups without appropriate recommender engines
is suboptimal, a regular search engine approach is too inefficient. To develop a
group recommender engine, i.e. a model predicting a user’s membership in a spe-
cific group, we analyze the relationship between tag clusters and groups through
association analysis [1].

Based on the association analysis we can construct a special weight function
for groups which uses the co-occurrence of users in a given group and a given
cluster as follows:

wgroup(g, c) =
cooc(g, c) ∗ ‖U‖

freq(g) ∗ freq(c)
, (9)
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where cooc(g, c) denotes the number of users that are in group g and also have
a non-zero weight wuser(g, c) for cluster c. freq(g) is the total number of users
who are member of group g and freq(c) is the total number of users for whom
wuser(g, c) is non-zero.

Finally, we can construct the recommender engine based on combining the
user weight function (Eq. 7) and the group weight function to rank a set of
groups G∗ by computing a score for each group g∗ ∈ G∗:

sgroup(u, g∗) =
∑

c∈C

wuser(u, c) ∗ wgroup(g
∗, c). (10)

Note: It would actually be more precise to conduct a “multiple item association
analysis” [1] for every possible subset of clusters to every group. However, this is
infeasible from a computational point of view and our experiments have shown
that a simple cumulation of the weight values serves as a good approximation.

6 Evaluation

The method that we used for evaluating the quality of the recommendations
produced by the approach proposed in this contribution was to send emails
to a systematically selected test group of real users which contained some of
the produced recommendations. Also, another group of users – a systematically
selected control group – received emails with control content (see below). We
then observed the behavior of the users in both groups on the platform with
respect to a set of control variables. This allowed us to compare the two groups
and thereby measure the success of the recommendations.

For evaluating the “user-to-user” recommender engine we sent emails con-
taining the top four recommendations for each user to every one of 65.000 users
in the test group. The users of the control group received an email with generic
placeholder content. We then observed the users for one week and measured a
set of test variables that were analyzed via hypothesis testing. Tab. 1 shows the
resulting p-values. It can be seen that the variable “number of contacts” yields
a significant improvement (assuming a significance level of 0.05) between the
test and the control group. We value this as a proof for the usefulness of the
“user-to-user” recommendations.

Regarding “user-to-group” recommendations, the results are also shown in
Tab. 1. The test group also had a size of 65.000 users and each of them received
the top four group recommendations. The test group received emails with control
content. For this we chose to recommend a static list of ten very popular groups.
From the results it can be seen that we obtained a highly significant improvement
in the variable “number of groups joined” which proves the relevance of the group
recommendations produced by our approach.
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variable user-to-user user-to-group

number of profile visits 0,2788 N/A
number of contacts 0,0222 N/A
number of groups joined 0,5423 < 0.0001

number of invitations sent 0,0823 N/A
number of messages sent 0,3932 N/A
number of successful invitations 0,8624 N/A
number of logins 0,0917 N/A

Table 1. Results of the evaluation test with emails. Emails with recommendations were
sent to real users of a test group. A set of test variables was observed and a hypothe-
sis test was conducted against a control group. We obtained significant improvements
(p-value below 0.05) in the variable “number of contacts” for “user-to-user” recom-
mendations and in the variable “number of groups joined” for the “user-to-group”
recommendations. (For the “user-to-group” recommendations, there are unfortunately
no results available for the other variables.)

7 Summary and Conclusion

In this contribution we have presented an automatic multi-step procedure for
creating a data-driven ontology for a popular business networking platform called
XING. The ontology can be utilized as a general purpose recommender scheme.

For this we first created an inverted index of tags using the MapReduce
paradigm and by extracting tag data from a large number of user profiles. The
result of this is a special type of folksonomy. We then used association measures
to derive a tag graph by discovering semantic relations between tags. This can be
interpreted as bringing a first layer of organizational structure to the folksonomy.

Subsequently, we applied a graph clustering algorithm on the tag graph re-
sulting in groups of tags which are semantically related to each other. The result
of this was a second layer of organizational structure which can be seen as an
ontology on top of the folksonomy. Based on tag clusters we showed how to
build recommender engines by “projecting” different types of objects onto the
tag clusters.

Finally, we presented evaluation results for two application scenarios for
“user-to-user” recommendations and “user-to-group” recommendation, where
we were able to prove the effectiveness of the proposed scheme. We sent emails
to a test group of real users and obtained significant improvements in certain
control variables.

Our future work will focus on utilizing the proposed scheme for building
more recommender engines for other objects on the website in order to offer
more relevant content to users. Promising candidates are for example “user-to-
jobposting” and “user-to-events” recommender engines.
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